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ABSTRACT 

The World Wide Web provides continuous sources of information 

with similar semantic structure like news feeds, user reviews and 

user comments on various topics. These sources are essential for 

the goal of online opinion mining. The paper proposes a 

computationally efficient algorithm for structured information 

extraction from web pages. The algorithm relies on a combination 

of analysis of structured data and natural language processing of 

text content. It maps HTML pages containing news, reviews or 

user comments to a custom designed RSS feed like structure. 

Such information usually includes the textual opinions, and 

factual information like publication date, product price, author 

name and influence. Due to the real time nature of the data 

sources the computational complexity of such a solution should 

be linear or close to linear. The computational complexity of the 

proposed algorithm is linear. In comparison similar previously 

published approaches have complexity no smaller than )( 2nO . 

Further we conduct experiments with real world data that achieves 

extraction accuracy of 84% to 92% which is comparable to the 

recent results in this field. Finally the paper discuses the results of 

the experiment and shares gained experience that can be useful for 

applying the algorithm in other domains. 

Categories and Subject Descriptors 

H.3.3. Information Search and Retrieval, Retrieval models 

General Terms 

Algorithms, Performance. 
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Information Extraction, Wrapper, Tree Matching 

1. INTRODUCTION 
The Web is the largest source of publicly available personal 

opinions, comments and reviews. The number of new pages 

published each day on the Internet grows exponentially and so 

does the quantity of the available information. With the expansion 

of the Web 2.0 and the mobile Internet devices people are 

encouraged to share their view on products, news articles, books 

and any kind of subject. It becomes practically impossible to 

manually gather the important information and monitor new 

trends in a timely manner without an automated support. The goal 

of this paper is to provide a solution for web page metadata 

extraction like author, publication date, main content, comments 

feed etc. with linear computational complexity. Programs that 

perform such Information Extraction are called wrappers [Zhai 

and Liu 2005b].  

Each web page can be represented as a hierarchical structure of 

elements, which usually are around 5000 per page. Our aim is to 

simplify and align this structure to a much smaller structure 

containing the desired metadata, which is similar to an RSS feed, 

containing 3 to 5 elements per item. Our key approach is to 

exclude irrelevant elements by semantic estimation of the textual 

content. Our wrapper is equipped with natural language 

processing tools like Part Of Speech (POS) tagger, Dictionary of 

sentiment aware words and Thesaurus tool.  

To our knowledge, the existing tree alignment algorithms used by 

wrappers have a computational complexity of )( 2nO  or higher: 

[Zhai and Liu, 2005b], [Ferrara and Baumgartner, 2011]. Tree 

alignment problems have been studied in compiler theory, where a 

similar problem of discovering similarity in program code 

structures has to be solved [Baxter et Al., 1998] with linear 

computational complexity. We apply similar approach in our 

Information Extraction wrapper and we define a hash function 

that compares linearly the candidate root elements from the web 

page to the desired root element of the metadata tree. 

2. RELATED WORK 
The problem of wrapper construction has been studied in systems 

like Stalker [10] which proposes symbolic method for information 

extraction. Unfortunately it strictly depends on the website syntax 

and needs an update after each modification of the HTML design. 

[14] proposes an algorithm for measurement of the distance 

between two trees. It has a computational complexity on the order 

of the product of the sizes of both trees. The method is dependent 

on the internal tree topology, which is not necessarily needed for 

content driven information extraction. [15] propose an algorithm 

for Web data extraction based on partial tree alignment. Their 
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solution has a quadratic complexity and can be improved under 

certain constraints. [6] and later other authors like [3] work on 

syntactically based algorithms, which are also bound to the exact 

web page structure. Recent studies are exploring the automatic 

wrapper adaptation [4] and use of Markov Logic Networks [12].  

An overview of recent applications of tree alignment techniques 

can be found in [13] and [5]. 

3. METHODOLOGY 
Our idea of information extraction can be explained as follows: 

First of all we fetch the web page content and parse it to a tree-

like hierarchical structure. A standard news article with comments 

contains more than 5000 nodes. At a second step we apply Data 

Type assignment to each node with the goal to identify interesting 

candidates for the desired metadata like personal names, dates, 

textual content, and sentiment aware textual content. Finally we 

apply the tree alignment algorithm, which compares nodes of the 

web page tree and the resulting metadata tree via hash function. 

The limitations of the algorithm are related to the HTML validity 

and the web pages structure of the crawled data. This problem is 

discussed in more details in paragraph 3.4. 

3.1 Data Collection 
The web pages being analyzed are gathered by a crawler, 

forwarded to a general purpose HTML parser to obtain their 

hierarchical structure and then processed by a data-type analyzer 

to assign on all leaf nodes one of the following types: 

 Date statement – e.g. Added by {Author} on 20/11/2011; 

 Comment/Review Candidate - Statement with presence of 

sentiment aware words. 

 Main Text Candidate - Longest text of the page, not being a 

link and containing morphologically complete sentences. 

 Name Entity - Detected by regular expression and list of 

known personal names. 

 Extraneous - Leafs with no particular data type assigned. 

Once all leafs are assigned a type, we delete: all ones of type 

Extraneous, all nodes not leading to one of the remaining leafs; 

and all nodes having a single child. 

On next step to each node a triple of numerical values is assigned. 

The triple elements are: 

 Number of descendant nodes (and leafs) 

 Number of words in descendant nodes 

 Sentiment score  

The values are then used as an input for the tree matching via hash 

function.  

The value is calculated with a bag-of-words technique (lexicon of 

sentiment aware words) [7]. The sentiment aware lexicons can be 

obtained by the methods described by [7]. The value is used to 

discover user reviews and comments. 

 Factual score - the factual score is calculated analogically to 

the sentiment score with automatically built lexicon of 

factual aware words. The applied method for lexicon 

construction is described by [8]. 

 HTML tag - the original HTML tag of the node. 

 Number of similar adjacent nodes - the number of adjacent 

nodes with identical HTML tag and similar Sentiment and 

Factual scores. It is used to discover repeating structures on 

the page like user comments. 

An optional technique that could be applied to achieve cleaner 

results is to double fetch the page and exclude content changing 

nodes as potentially enclosing advertizing blocks or irrelevant 

information like examples of unrelated reviews. 

3.2 Alignment with the Wrapper Tree 
Our goal is to automatically extract a Rich Site Summary (RSS) 

feed of online reviews or comments from a Web page. The desired 

output has simple tree structure that has to be mapped to the one 

obtained with the method described in previous section. 

The conventional algorithms like Simple Tree Matcher and 

adapted center star [16] have computational complexity of 

)( 2nO or higher. Our approach is to reduce significantly the 

computational complexity by applying a hash function that 

estimates the sub-trees under each node. The method has been 

applied in compiler design [1] and is pertinent for application to 

information extraction area too. Given that the hash function 

distributes an N-node tree into B buckets the complexity of the 

algorithm would be )/( BNO . Depending on the hash function 

design we could ignore the leaf order or the tree internal structure 

and compare trees only by the contained information leafs. For 

example the result of the function could be the sorted list of leaf 

data types in the underlying sub-tree of a given node. For example 

‗ACD‘ could be the hash value for all ancestors of exactly one 

Author leaf, one Comment leaf and one Date leaf, ignoring their 

exact order in the tree. Collisions are resolved by preference of the 

node with the closest height and first horizontal occurrence. 

3.3 Computational Complexity of the 

Algorithm 
The data type assignment to the leaf structure has linear 

complexity, because it is done independently for each leaf in a 

sequential order. The complexity of the text analysis itself could 

be non-linear, but this does not concern the current algorithm and 

by the other hand linear scoring algorithms have acceptable 

performance for text classification. 

The tree reduction phase which cleans leafs with unnecessary data 

types and parent nodes not leading to meaningful leafs has also 

linear complexity and is done from the leafs towards the root 

node.  

Finally the hash comparison of the resulting tree with the wrapper 

output tree is also in the order of N e.g. has linear complexity, 

because our hash function depends on the number of the tree‘s 

leafs and is well in the order of N. The complexity of the 

algorithm phases is estimated as follows: 

 Data Type Assignment - )(NO  

 Tree reduction - )(NO  

 Tree alignment - )/( BNO  

Since B is on the order of N it follows that the overall 

computational complexity of the algorithm is linear. We exclude 

the assessment of the HTML parsing complexity, because it is not 

in the subject of our research and many conventional solutions are 

available under various licensing policies. 



3.4 Limitations and Solutions 
The ideal input for our Wrapper are valid XHTML pages or 

HTML pages with clean tree-like hierarchy of the elements. 

Definitely there are many exceptions on the Web, but they tend to 

use older version of HTML and these web sites are losing their 

reputation. There are many techniques to cope with the problem 

of erroneous HTML structure and this is done successfully in 

most of the freely available HTML parsers. 

The next set of limitations is related to the hash function. The 

detection and matching to repetitive sub-tree clones has to be 

resolved by adding additional signs in the hash function‘s result, 

for example the addition of parentheses is one possible solution. 

Not all web sites have identical structure of main text and a list of 

comments or reviews, but without losing our linear complexity we 

could add more possible matching trees to the tree alignment 

phase. This would increase the complexity up to )( NMO   for M 

being the number of matching trees which is smaller than a given 

constant and could be ignored. The set of matching trees could 

describe a collection of blog page patterns and social media page 

patterns, although depending on the data type assignment quality 

this could be unnecessary. 

4. EXPERIMENT 
The purpose of our experiment is to demonstrate the extraction 

performance of the algorithm with real world data. 

We chose the Open Directory Project as a source of websites 

which are potential candidates for our Wrapper. The list of 

included websites in the project can be downloaded and used as a 

seed for further web crawling, parsing and indexing. The websites 

are also classified in sections and languages. At the time of the 

experiment the directory contained approximately 4.9 millions of 

websites. 

4.1 Experiment Design 
Our wrapper was applied to two test sets of websites. The first 

result estimation was based on 100 manually selected websites in 

English language, split equally to negative and positive classes. 

The second set of experiments was designed to estimate larger 

number of websites, extracted from particular sections from the 

seed list.  

Given the number of seed websites and the projected number of 

web pages to crawl, we chose Apache Hadoop as a computational 

platform. 

4.2 Results 
The first set of experiments was the classification of 100 websites 

where the presence of successfully extracted feed from a web page 

classifies the whole domain name as a positive result. The final 

classification can be found in the following table 1: 

 

Table 1. Confusion matrix for the first set of the experiment 

 Actual 

positive 

Actual 

negative 

Total 

Classified Positive  81 5 86 

Classified Negative 11 3 14 

Total 92 8 100 

 

The second set of experiments was targeted at categories of 

websites which are supposed fit the model of main story (review 

or article) and readers‘ comments. We chose the News section 

from the Open Directory Project (www.dmoz.org/News) which 

contained 7947 sites at the time of the experiment. The websites 

in this section are supposed to present news articles with their 

author and date of publication on a dedicated page, eventually 

containing repetitive user comments. Our algorithm found 

positive pages in 6853 sites or 86.23%. Manual verification on 

100 randomly selected websites among the test set showed the 

results in table 2. 

 

Table 2. Confusion matrix for the second set of the experiment 

over randomly selected 100 sample websites 

 Actual 

positive 

Actual 

negative 

Total 

Classified Positive  43 2 45 

Classified Negative 7 48 55 

Total 50 50 100 

 

5. DISCUSSION 
The proposed algorithm shows and accuracy of 91% in the 

manually selected test set, while the accuracy drops down on the 

randomly constructed test set to 84%. Which is comparable to the 

information extraction accuracy achieved in more structured data 

by [11].This could be due to at least two reasons. First of all the 

manually constructed test set was chosen by authors‘ preferences 

and willingly or not, the authors may have given preference to 

some particular style of web pages, which could be easier to parse 

or analyze. The second reason that could explain the difference is 

the fact that the websites present in the Open Directory Project 

may not follow the modern trends and some of them have kept 

their archaic (in the terms of the Web) HTML design which is 

outdated and unsuitable for modern parsers. Other observation is 

that although there is a large number of websites declared to 

deliver ‗Breaking News‘, few of them are proposing Socialized 

functions like commenting and sharing reader‘s opinions. This 

poses more difficulties to the pattern recognition process. 

The actual classification accuracy is strictly based on natural 

language processing methods like sentiment analysis, text mining 

of date fields and named entities (usernames, authors‘ names). 

The quality of this preliminary analysis is crucial for the final 

results and therefore has an impact over the assessment of the tree 

matching algorithm.  

Other key point in the experiment is the design of the hash 

function. It determines the sensitivity of the tree alignment and its 

precision in the tree matching structure. Similar problems have 

been studied by [1] for detection of sub-tree clones in hierarchical 

structures. 

6. CONCLUSIONS 
The proposed method for information extraction relies on hash 

function design, which allows comparing and aligning similar 

trees with a linear computational complexity. The accuracy of the 

solution was demonstrated over a set of real world web pages. A 

key point in the research is the application of methods for 

sentiment analysis and text classification in order to pre-process 

the HTML data and assign high-level data types to the content. 

http://www.dmoz.org/News


The experiment was focused on the extraction of articles and 

product reviews, together with their user comments from web 

pages. This is, according to our persuasion, one of the most wide 

spread models of online opinion sharing. Further work may 

include the extraction of additional information like indications of 

the author‘s influence and extraction of complete text from 

individual pages. 
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