
Computationally Effective Algorithm for Information

Extraction and Online Review Mining

Boris Kraychev
Faculty of Mathematics and Informatics

Sofia University St. Kliment Ohridski
Sofia, Bulgaria

boris.kraychev@uni-sofia.bg

Ivan Koychev
Faculty of Mathematics and Informatics

Sofia University St. Kliment Ohridski
Sofia, Bulgaria

koychev@fmi.uni-sofia.bg

ABSTRACT

The World Wide Web provides continuous sources of information

with similar semantic structure like news feeds, user reviews and

user comments on various topics. These sources are essential for

the goal of online opinion mining. The paper proposes a

computationally efficient algorithm for structured information

extraction from web pages. The algorithm relies on a combination

of analysis of structured data and natural language processing of

text content. It maps HTML pages containing news, reviews or

user comments to a custom designed RSS feed like structure.

Such information usually includes the textual opinions, and

factual information like publication date, product price, author

name and influence. Due to the real time nature of the data

sources the computational complexity of such a solution should

be linear or close to linear. The computational complexity of the

proposed algorithm is linear. In comparison similar previously

published approaches have complexity no smaller than)(2nO .

Further we conduct experiments with real world data that achieves

extraction accuracy of 84% to 92% which is comparable to the

recent results in this field. Finally the paper discuses the results of

the experiment and shares gained experience that can be useful for

applying the algorithm in other domains.

Categories and Subject Descriptors

H.3.3. Information Search and Retrieval, Retrieval models

General Terms

Algorithms, Performance.

Keywords

Information Extraction, Wrapper, Tree Matching

1. INTRODUCTION
The Web is the largest source of publicly available personal

opinions, comments and reviews. The number of new pages

published each day on the Internet grows exponentially and so

does the quantity of the available information. With the expansion

of the Web 2.0 and the mobile Internet devices people are

encouraged to share their view on products, news articles, books

and any kind of subject. It becomes practically impossible to

manually gather the important information and monitor new

trends in a timely manner without an automated support. The goal

of this paper is to provide a solution for web page metadata

extraction like author, publication date, main content, comments

feed etc. with linear computational complexity. Programs that

perform such Information Extraction are called wrappers [Zhai

and Liu 2005b].

Each web page can be represented as a hierarchical structure of

elements, which usually are around 5000 per page. Our aim is to

simplify and align this structure to a much smaller structure

containing the desired metadata, which is similar to an RSS feed,

containing 3 to 5 elements per item. Our key approach is to

exclude irrelevant elements by semantic estimation of the textual

content. Our wrapper is equipped with natural language

processing tools like Part Of Speech (POS) tagger, Dictionary of

sentiment aware words and Thesaurus tool.

To our knowledge, the existing tree alignment algorithms used by

wrappers have a computational complexity of)(2nO or higher:

[Zhai and Liu, 2005b], [Ferrara and Baumgartner, 2011]. Tree

alignment problems have been studied in compiler theory, where a

similar problem of discovering similarity in program code

structures has to be solved [Baxter et Al., 1998] with linear

computational complexity. We apply similar approach in our

Information Extraction wrapper and we define a hash function

that compares linearly the candidate root elements from the web

page to the desired root element of the metadata tree.

2. RELATED WORK
The problem of wrapper construction has been studied in systems

like Stalker [10] which proposes symbolic method for information

extraction. Unfortunately it strictly depends on the website syntax

and needs an update after each modification of the HTML design.

[14] proposes an algorithm for measurement of the distance

between two trees. It has a computational complexity on the order

of the product of the sizes of both trees. The method is dependent

on the internal tree topology, which is not necessarily needed for

content driven information extraction. [15] propose an algorithm

for Web data extraction based on partial tree alignment. Their

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

Conference’10, Month 1–2, 2010, City, State, Country.

Copyright 2010 ACM 1-58113-000-0/00/0010…$10.00.

solution has a quadratic complexity and can be improved under

certain constraints. [6] and later other authors like [3] work on

syntactically based algorithms, which are also bound to the exact

web page structure. Recent studies are exploring the automatic

wrapper adaptation [4] and use of Markov Logic Networks [12].

An overview of recent applications of tree alignment techniques

can be found in [13] and [5].

3. METHODOLOGY
Our idea of information extraction can be explained as follows:

First of all we fetch the web page content and parse it to a tree-

like hierarchical structure. A standard news article with comments

contains more than 5000 nodes. At a second step we apply Data

Type assignment to each node with the goal to identify interesting

candidates for the desired metadata like personal names, dates,

textual content, and sentiment aware textual content. Finally we

apply the tree alignment algorithm, which compares nodes of the

web page tree and the resulting metadata tree via hash function.

The limitations of the algorithm are related to the HTML validity

and the web pages structure of the crawled data. This problem is

discussed in more details in paragraph 3.4.

3.1 Data Collection
The web pages being analyzed are gathered by a crawler,

forwarded to a general purpose HTML parser to obtain their

hierarchical structure and then processed by a data-type analyzer

to assign on all leaf nodes one of the following types:

 Date statement – e.g. Added by {Author} on 20/11/2011;

 Comment/Review Candidate - Statement with presence of

sentiment aware words.

 Main Text Candidate - Longest text of the page, not being a

link and containing morphologically complete sentences.

 Name Entity - Detected by regular expression and list of

known personal names.

 Extraneous - Leafs with no particular data type assigned.

Once all leafs are assigned a type, we delete: all ones of type

Extraneous, all nodes not leading to one of the remaining leafs;

and all nodes having a single child.

On next step to each node a triple of numerical values is assigned.

The triple elements are:

 Number of descendant nodes (and leafs)

 Number of words in descendant nodes

 Sentiment score

The values are then used as an input for the tree matching via hash

function.

The value is calculated with a bag-of-words technique (lexicon of

sentiment aware words) [7]. The sentiment aware lexicons can be

obtained by the methods described by [7]. The value is used to

discover user reviews and comments.

 Factual score - the factual score is calculated analogically to

the sentiment score with automatically built lexicon of

factual aware words. The applied method for lexicon

construction is described by [8].

 HTML tag - the original HTML tag of the node.

 Number of similar adjacent nodes - the number of adjacent

nodes with identical HTML tag and similar Sentiment and

Factual scores. It is used to discover repeating structures on

the page like user comments.

An optional technique that could be applied to achieve cleaner

results is to double fetch the page and exclude content changing

nodes as potentially enclosing advertizing blocks or irrelevant

information like examples of unrelated reviews.

3.2 Alignment with the Wrapper Tree
Our goal is to automatically extract a Rich Site Summary (RSS)

feed of online reviews or comments from a Web page. The desired

output has simple tree structure that has to be mapped to the one

obtained with the method described in previous section.

The conventional algorithms like Simple Tree Matcher and

adapted center star [16] have computational complexity of

)(2nO or higher. Our approach is to reduce significantly the

computational complexity by applying a hash function that

estimates the sub-trees under each node. The method has been

applied in compiler design [1] and is pertinent for application to

information extraction area too. Given that the hash function

distributes an N-node tree into B buckets the complexity of the

algorithm would be)/(BNO . Depending on the hash function

design we could ignore the leaf order or the tree internal structure

and compare trees only by the contained information leafs. For

example the result of the function could be the sorted list of leaf

data types in the underlying sub-tree of a given node. For example

‗ACD‘ could be the hash value for all ancestors of exactly one

Author leaf, one Comment leaf and one Date leaf, ignoring their

exact order in the tree. Collisions are resolved by preference of the

node with the closest height and first horizontal occurrence.

3.3 Computational Complexity of the

Algorithm
The data type assignment to the leaf structure has linear

complexity, because it is done independently for each leaf in a

sequential order. The complexity of the text analysis itself could

be non-linear, but this does not concern the current algorithm and

by the other hand linear scoring algorithms have acceptable

performance for text classification.

The tree reduction phase which cleans leafs with unnecessary data

types and parent nodes not leading to meaningful leafs has also

linear complexity and is done from the leafs towards the root

node.

Finally the hash comparison of the resulting tree with the wrapper

output tree is also in the order of N e.g. has linear complexity,

because our hash function depends on the number of the tree‘s

leafs and is well in the order of N. The complexity of the

algorithm phases is estimated as follows:

 Data Type Assignment -)(NO

 Tree reduction -)(NO

 Tree alignment -)/(BNO

Since B is on the order of N it follows that the overall

computational complexity of the algorithm is linear. We exclude

the assessment of the HTML parsing complexity, because it is not

in the subject of our research and many conventional solutions are

available under various licensing policies.

3.4 Limitations and Solutions
The ideal input for our Wrapper are valid XHTML pages or

HTML pages with clean tree-like hierarchy of the elements.

Definitely there are many exceptions on the Web, but they tend to

use older version of HTML and these web sites are losing their

reputation. There are many techniques to cope with the problem

of erroneous HTML structure and this is done successfully in

most of the freely available HTML parsers.

The next set of limitations is related to the hash function. The

detection and matching to repetitive sub-tree clones has to be

resolved by adding additional signs in the hash function‘s result,

for example the addition of parentheses is one possible solution.

Not all web sites have identical structure of main text and a list of

comments or reviews, but without losing our linear complexity we

could add more possible matching trees to the tree alignment

phase. This would increase the complexity up to)(NMO for M

being the number of matching trees which is smaller than a given

constant and could be ignored. The set of matching trees could

describe a collection of blog page patterns and social media page

patterns, although depending on the data type assignment quality

this could be unnecessary.

4. EXPERIMENT
The purpose of our experiment is to demonstrate the extraction

performance of the algorithm with real world data.

We chose the Open Directory Project as a source of websites

which are potential candidates for our Wrapper. The list of

included websites in the project can be downloaded and used as a

seed for further web crawling, parsing and indexing. The websites

are also classified in sections and languages. At the time of the

experiment the directory contained approximately 4.9 millions of

websites.

4.1 Experiment Design
Our wrapper was applied to two test sets of websites. The first

result estimation was based on 100 manually selected websites in

English language, split equally to negative and positive classes.

The second set of experiments was designed to estimate larger

number of websites, extracted from particular sections from the

seed list.

Given the number of seed websites and the projected number of

web pages to crawl, we chose Apache Hadoop as a computational

platform.

4.2 Results
The first set of experiments was the classification of 100 websites

where the presence of successfully extracted feed from a web page

classifies the whole domain name as a positive result. The final

classification can be found in the following table 1:

Table 1. Confusion matrix for the first set of the experiment

 Actual

positive

Actual

negative

Total

Classified Positive 81 5 86

Classified Negative 11 3 14

Total 92 8 100

The second set of experiments was targeted at categories of

websites which are supposed fit the model of main story (review

or article) and readers‘ comments. We chose the News section

from the Open Directory Project (www.dmoz.org/News) which

contained 7947 sites at the time of the experiment. The websites

in this section are supposed to present news articles with their

author and date of publication on a dedicated page, eventually

containing repetitive user comments. Our algorithm found

positive pages in 6853 sites or 86.23%. Manual verification on

100 randomly selected websites among the test set showed the

results in table 2.

Table 2. Confusion matrix for the second set of the experiment

over randomly selected 100 sample websites

 Actual

positive

Actual

negative

Total

Classified Positive 43 2 45

Classified Negative 7 48 55

Total 50 50 100

5. DISCUSSION
The proposed algorithm shows and accuracy of 91% in the

manually selected test set, while the accuracy drops down on the

randomly constructed test set to 84%. Which is comparable to the

information extraction accuracy achieved in more structured data

by [11].This could be due to at least two reasons. First of all the

manually constructed test set was chosen by authors‘ preferences

and willingly or not, the authors may have given preference to

some particular style of web pages, which could be easier to parse

or analyze. The second reason that could explain the difference is

the fact that the websites present in the Open Directory Project

may not follow the modern trends and some of them have kept

their archaic (in the terms of the Web) HTML design which is

outdated and unsuitable for modern parsers. Other observation is

that although there is a large number of websites declared to

deliver ‗Breaking News‘, few of them are proposing Socialized

functions like commenting and sharing reader‘s opinions. This

poses more difficulties to the pattern recognition process.

The actual classification accuracy is strictly based on natural

language processing methods like sentiment analysis, text mining

of date fields and named entities (usernames, authors‘ names).

The quality of this preliminary analysis is crucial for the final

results and therefore has an impact over the assessment of the tree

matching algorithm.

Other key point in the experiment is the design of the hash

function. It determines the sensitivity of the tree alignment and its

precision in the tree matching structure. Similar problems have

been studied by [1] for detection of sub-tree clones in hierarchical

structures.

6. CONCLUSIONS
The proposed method for information extraction relies on hash

function design, which allows comparing and aligning similar

trees with a linear computational complexity. The accuracy of the

solution was demonstrated over a set of real world web pages. A

key point in the research is the application of methods for

sentiment analysis and text classification in order to pre-process

the HTML data and assign high-level data types to the content.

http://www.dmoz.org/News

The experiment was focused on the extraction of articles and

product reviews, together with their user comments from web

pages. This is, according to our persuasion, one of the most wide

spread models of online opinion sharing. Further work may

include the extraction of additional information like indications of

the author‘s influence and extraction of complete text from

individual pages.

7. ACKNOWLEDGMENTS
This research is supported by the SmartBook project, subsidized

by the Bulgarian National Science Fund, under Grant D002-

111/15.12.2008.

8. REFERENCES
[1] Baxter I.D., Yahin A., Moura L., Sant‘Anna M., Bier L.

1998. Clone Detection Using Abstract Syntax Trees. Proc.

of ICSM’98.

[2] Ciravegna F. 2000. Learning to Tag for Information

Extraction from Text. Proc. of the ECAI-2000.

[3] Crescenzi V., Mecca G. 2004. Automatic Information

Extraction from Large Websites. J. ACM, Vol. 51, Nr. 5 New

York, NY, USA: ACM (2004) p. 731—779.

[4] Ferrara E., Baumgartner R. 2011. Combinations of

Intelligent Methods and Applications – Springer.

[5] Ferrara E., Fiumara G., Baumgartner R. 2010. ―Web Data

Extraction, Applications and Techniques: A Survey‖,

Technical Report.

[6] Freitag D. 1998. Information Extraction From HTML:

Application of a General Learning Approach. Proc. of the

15th National Conference on Artificial Intelligence (AAAI-

98).

[7] Godbole N., Srinivasaiah M., Skiena S. 2007. Large-scale

Sentiment Analysis for News and Blogs, ICWSM.

[8] Grefenslette G., Qu Y., Evans and D.A.,Shanahan J. G. 2006.

Validating the Coverage of Lexical Resources for Affect

Analysis and Automatically Classifying New Words along

Semantic Axes, Springer.

[9] Hassan A., Radev D. 2010. Identifying Text Polarity Using

Random Walks, Proceedings of the Association for

Computational Linguistics.

[10] Muslea I., Minton S., Knoblock C. A. 1999. A Hierarchical

Approach to Wrapper Induction. Proc. of the Intl. Conf. on

Autonomous Agents (AGENTS’99), pp. 190–197.

[11] Peng F., McCallum A. 2004. Accurate Information

Extraction from research papers using conditional random

fields, HLT-NAACL04, p. 329-336.

[12] Satpal S., Bhadra S., Sundararajan S., Rastogi R., Sen P.

2011. Proceedings of the 20th international conference

companion on World Wide Web, ACM New York, NY,

USA.

[13] Tekli J., Chbeir R., Yetongnon K. 2009. ―An overview of

XML similarity: Background, current trends and future

directions‖, Computer science review, vol. 3, no. 3, pp.151-

173.

[14] Yang W. 1991. Identifying Syntactic Differences between

Two Programs. Software Practice Experiment, 21(7), pp.

739–755.

[15] Zhai Y., Liu B. 2005. Extracting Web Data Using Instance-

Based Learning. Proc. of 6th Intl. Conf. on Web Information

Systems Engineering (WISE‘05), pp. 318–331.

[16] Zhai Y., Liu B. 2005 Web Data Extraction based on Partial

Tree Alignment. Proc. of the 14th Intl. World Wide Web

Conference (WWW‘05), pp. 76–85.

	1. INTRODUCTION
	2. RELATED WORK
	3. METHODOLOGY
	3.1 Data Collection
	3.2 Alignment with the Wrapper Tree
	3.3 Computational Complexity of the Algorithm
	3.4 Limitations and Solutions

	4. EXPERIMENT
	4.1 Experiment Design
	4.2 Results

	5. DISCUSSION
	6. CONCLUSIONS
	7. ACKNOWLEDGMENTS
	8. REFERENCES

